Fraud Is Growing
Deceit, crime and corruption are rapidly infiltrating every day society. Fraud, in all its forms, can be categorised as an anti-social behaviour, and this behaviour can be categorised even further into two distinct categories. On the one hand, there are those crimes perpetrated directly against victims, such as theft of an individual’s identity and taking over of their bank account, or tricksters cheating pensioners out of their life savings. On the other hand, there are so-called ‘victimless frauds’, typically perpetrated against corporates or the state, such as tax evasion, obtaining credit with no intention of paying it back, and insurance fraud claims.
In this modern society, characterised by an increasing awareness of the social divide between the ‘haves’ and ‘have nots,’ fraud is becoming a safer and more profitable form of criminality. Subsequently, it is hardly surprising that two to five per cent of transactions are fraudulent. However, this doesn’t represent the amount of fraudulent people. Rather, criminals are making fraud their business and carrying it out it at an industrial level.
Without a doubt, fraudsters are getting smarter and digital channels are making it easier for them to conduct this heinous activity from the comfort of their bedrooms; yet, businesses and governments can begin to take on these fraudsters and prevent this. The answer is Artificial Intelligence (AI) and network analytics.
Traditional Monitoring Approaches Will Not Work
Traditionally, the approach taken to tackle fraud has been to embed a set of simplistic rules to alert potential fraudulent behaviour. This can encompass anything from a payment of a certain amount, to purchase of conspicuous goods or consistent round number of payments.
Indeed, it can’t be denied that basic AI techniques have been used to catch criminal activity, but it’s clear more sophisticated AI must come into force. Constantly, fraudsters are testing the boundaries, notably breaking up their fraudulent transactions into small packages to go below the radar and remain undetected. Second guessing the rule sets and thresholds designed to detect them makes the criminals increasingly dangerous as they can become invisible to all detection capabilities. The result is a frustrating game of cat and mouse, adjusting thresholds and changing rule sets.
The Solution: Combining AI and Network Analytics Technologies
Global AML spending is predicted to rise from US $5.9 billion in 2013 to US $8.2 billion in 2017
In order to understand how artificial intelligence can outsmart fraudsters, businesses must understand more about artificial intelligence. There is a myriad of misconceptions about AI, the role of AI within a business, and what lies at the heart of AI: data. When businesses think of AI, many automatically think of machine learning or deep learning, which for some is the perfect solution; however, for fraud prevention, it isn’t appropriate. For AI to autonomously process data and learn how to detect fraud, it would generate huge volumes of false positives and in fact provide investigators with no real insight as to why something has been flagged as fraudulent. There isn’t a set methodology to commit fraud, and the machines just can’t keep up.
To outsmart the fraudster, the system must understand the fraudster, how they scale their operation to make money and then they will be able to adapt their detection methods to avoid reverse engineering by the bad guys. This can be achieved through a hybrid model, beginning with humans teaching the AI the basics – just as a human would learn – with a point to start and then develop a complete picture. They will learn from frauds they have caught and look for any comparable variables in order to identify frauds of a very similar strategy that have not yet been caught.
To use AI to its full capacity, banks need to understand the network and its wider context. Understanding the network and its wider context is the first step into reducing false positives and becoming more efficient and effective in the fight against criminal activity. Contextual monitoring uses entity and network analysis techniques, in combination with advances analytical methods, to detect anomalous and suspect activity.
When understanding a customer, whether fraudulent or not, it is important to take all entities into consideration: shared identities, bank accounts, addresses, transactions, time correlated events, relationships, the list goes on. When fraudsters industrialise their activity to increase profits, they regularly re-use part of identities, or leave parts behind to trick the system and miss any connections to related fraud. By replicating your best investigators’ approach across a networked data, the AI will alert far more accurately and then provide the investigator team with a picture and wider, detailed explanation of the fraud.
However, this does beg the question – how does one track frauds that are completely new, with no trail and understanding of the scale? The beauty of networks is that the network continues to remain as the same starting point and then apply a range of techniques to detect abnormal behaviour. Peer group analysis, clustering and outlier analysis must be widened beyond purely transactional activity. It’s important for investigators to remove their blinkers and focus more widely on a range of entities and objects such as people, addresses and mobile numbers, for example. Businesses then must then take this a step further and overlay a complex set of techniques that make it nearly impossible for a fraudster to cheat the system and subsequently fly below the radar. This industrial level of networking is what will ensure businesses outsmart the fraudster.
Is Fraud just a Cost of Doing Business?
Historically businesses have often adopted the approach of putting in some basic measures to tackle fraud. Banks across sectors have installed current AML systems as a reaction to increasing regulatory pressure, rather than building bespoke systems. Over 25 per cent of financial services haven’t conducted AML/CFT (Combating the Financing of Terrorism) risk assessments across their global footprint. This practice is no longer acceptable for several reasons, most notably the cost of fraud is still being passed back to the consumer and money laundering is becoming a key means to financing terrorism. However, according to Wealth Insight, global AML spending is predicted to rise from US $5.9 billion in 2013 to US $8.2 billion in 2017, promising new opportunities for banks to create stronger barriers to fight criminals through the integration of AI and network analytics. Taking action will safeguard your reputation, save money and avoid regulatory action.
You may be interested in…

Solving the Shell Company Conundrum
New Decision Intelligence technology is allowing banks to identify illicit shell company networks at scale to crack down on money laundering and fraud.

3 Talented Quantexans Recognized in the 2023 Women of the Channel List
CRN’s 2023 Women of the Channel honors Tina Gravel, Donna Goodwin and Sheryl Wharff of Quantexa.

This Powerful New Solution Provides a Single View of Customers in Minutes
Quantexa is innovating quickly to test a faster, more streamlined way to deliver Entity Resolution at scale by bundling key capabilities of their Decision Intelligence Platform (DI) in a new product called ER Accelerate.

Quantexa Positioned as a Technology Leader in Quadrant’s 2023 AML SPARK Matrix
Quantexa has been named a 2023 Technology Leader in Quadrant Knowledge Solutions’ Anti-Money Laundering (AML) SPARK Matrix.

In Context: Enhancing KYC and AML Efforts With Innovative Technology
Today’s banking environment is rapidly evolving thanks to new technologies that are allowing organizations to get a full, 360-degree view of their customers. We caught up with Scott Nathan from Citi on the challenges the banking industry faces today and how savvy financial institutions are using technology to meet those challenges.

4 Areas of Focus for Financial Services Firms Following the FCA Review
The FCA’s review of firms’ Consumer Duty implementation plans highlights the positive progress made by some, but also the deficiencies in the approaches of others.
Related Solutions

Tax Authorities
Reduce the tax gap, identify fraud and non-compliance, and operate as efficiently as possible with limited resources.

Anti-money laundering
Reveal hidden risks and detect criminal activity faster. Reduce false positives to manage the cost of compliance. And improve investigations to make faster and more consistent decisions at scale.

Customs Agencies & Border Control
Contextual Decision Intelligence enables faster decisions, increased revenue collection and enhanced compliance. The Quantexa platform enables Customs and Border agency teams to analyze data successfully, automate and accelerate decision-making, and achieve improved results.

Fraud
Identify potentially fraudulent activity by looking at people or transactions in isolation. Understand the context surrounding the organizations you do business with to make fast, accurate decisions.

Fraud, Waste & Abuse
Empower your team with the best tools available for today’s challenges to identify and prevent fraud, waste and abuse with contextual decision intelligence software.

Credit Risk
Understand your customers, their business structures and supply chains. Make better lending decisions, faster. And support digital risk transformation.

Customer Intelligence
Generate a complete view of the context around your customers and prospects to build better relationships, reduce attrition and find hidden opportunities.

Revolutionize Your Financial Crime and Fraud Detection

Investigations
Enhance the efficiency, effectiveness and consistency of your operational and complex investigations to empower your teams to expose and understand risk faster.

Master Data Management
Connect all data—internal and third party—to create a joined-up, contextual view of all the relationships between your customers and every other domain.

Compliance
See how we help to reduce costs and improve coverage for financial crime compliance.

CDO
See how our platform uses contextual analysis to turn data into a high value asset.

CIO
See how our platform uses financial crime technology to enhance your existing IT ecosystem.

Healthcare
Reduce the tax gap, identify fraud and non-compliance, and operate as efficiently as possible with limited resources.

Contextual Monitoring
Reveal hidden risks and detect criminal activity faster. Reduce false positives to manage the cost of compliance. And improve investigations to make faster and more consistent decisions at scale.

Unified CRM Solution

Know Your Customer
Reduce significant manual effort across onboarding, refreshes and remediation. Automate checks, implement continuous monitoring, and focus on contextual decision making.

Growth and Retention

Contextual Engagement
Generate a complete view of the context around your customers and prospects to build better relationships, reduce attrition and find hidden opportunities.

Data Management
Connect all data—internal and third party—to create a joined-up, contextual view of all the relationships between your customers and every other domain.

Connected Customer View
Generate a complete view of the context around your customers and prospects to build better relationships, reduce attrition and find hidden opportunities.